Mark Scheme 4730 June 2006

$\left.\begin{array}{|llll|}\hline \text { (i) } & \text { M1 } & \begin{array}{l}\text { For using I }=\Delta(\mathrm{mv}) \text { in the } \\ \text { direction of the original } \\ \text { motion (or equivalent from } \\ \text { use of relevant vector }\end{array} \\ \text { diagram). }\end{array}\right\}$

\begin{tabular}{|c|c|c|c|c|}
\hline 3 (i) \& \begin{tabular}{l}
\[
1.4 \mathrm{R}=0.35 \times 360+1.05 \times 200
\] \\
Magnitude is 240 N
\[
0.7 \times 240=0.35 \times 200+1.05 \mathrm{~T}
\]
\[
\text { Tension is } 93.3 \mathrm{~N}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 6 \& \begin{tabular}{l}
For taking moments about C for the whole structure. \\
AG \\
For taking moments about \(A\) for the \(\operatorname{rod} A B\).
\end{tabular} \\
\hline \[
\begin{aligned}
\& \mathrm{OR} \\
\& \text { (i) }
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.7 \mathrm{R}_{\mathrm{B}}=70+1.05 \mathrm{~T} \text { and } \\
\& 1.05 \mathrm{~T}
\end{aligned} \quad 0.7 \mathrm{R}_{\mathrm{C}}=126+
\] \& M1
A1 \& \& For taking moments about \(A\) for \(A B\) and \(A C\). \\
\hline \& \[
\begin{aligned}
\& 0.7\left(560-\mathrm{R}_{\mathrm{B}}\right)-0.7 \mathrm{R}_{\mathrm{B}}=126- \\
\& 70 \text { or } \\
\& \text { 2.1T } \quad 0.7 \times 560=70+126+ \\
\& \text { Magnitude is } 240 \mathrm{~N} \\
\& \text { Tension is } 93.3 \mathrm{~N}
\end{aligned}
\] \& M1

A1 \& 6 \& | For eliminating T or for adding the equations, and then using $R_{B}+R_{C}=560$. |
| :--- |
| For a correct equation in R_{B} only or T only |
| AG |

\hline (ii) \& | Horizontal component is 93.3 N to the left $Y=240-200$ |
| :--- |
| Vertical component is 40 N downwards | \& B1ft

M1
A1 \& 3 \& For resolving forces vertically.

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 4 (i) \& \begin{tabular}{l}
\(L(m) \ddot{\theta}=-(m) g \sin \theta\) or \((m) \ddot{s}=-\) \\
(m) \(g \sin (s / L)\) \(\ddot{\theta} \approx-\mathrm{k} \theta\) or \(\ddot{s}=-\mathrm{ks}\) [and motion is therefore approx. simple harmonic] \\
Period is 3.14 s .
\end{tabular} \& M1
A1
B1
M1
M1 \& 5 \& \begin{tabular}{l}
For using Newton's \(2^{\text {nd }}\) Law perp. to string with \(a=L \ddot{\theta}\). \\
For using \(\mathrm{T}=2 \pi / \mathrm{n}\) and \(\mathrm{k}=\) \(\mathrm{w}^{2}\) or \(\mathrm{T}=2 \pi \sqrt{L / g}\) for simple pendulum. AG
\end{tabular} \\
\hline (ii) \& \[
\begin{aligned}
\& \dot{\theta}^{2}=4\left(0.1^{2}-0.06^{2}\right) \text { or } \\
\& 1 / 2 \mathrm{~m}(2.45 \dot{\theta})^{2}= \\
\& \quad 2.45 \mathrm{mg}(\cos 0.06- \\
\& \cos 0.1) \\
\& \text { Angular speed is } 0.16 \mathrm{rad} \mathrm{~s}^{-1} .
\end{aligned}
\] \& M1
A1

A1 \& 3 \& | For using $\dot{\theta}^{2}=n^{2}\left(\theta_{0}{ }^{2}-\theta^{2}\right)$ or the principle of conservation of energy |
| :--- |
| (0.1599... from energy method) |

\hline | OR |
| :--- |
| (ii) | \& | (in the case for which (iii) is attempted before (ii)) $\begin{aligned} & {[\dot{\theta}=-0.2 \sin 2 t]} \\ & \dot{\theta}=-0.2 \sin (2 \times 0.464) \end{aligned}$ |
| :--- |
| Angular speed is $0.16 \mathrm{rad} \mathrm{s}^{-1}$. | \& | M1 |
| :--- |
| A1ft |
| A1 | \& 3 \& For using $\dot{\theta}=\mathrm{d}(\mathrm{Acos} \mathrm{nt}) / \mathrm{dt}$

\hline (iii) \& | $0.06=0.1 \cos 2 \mathrm{t}$ or $0.1 \sin (\pi / 2-$ |
| :--- |
| 2t) |
| or $\quad 2 \mathrm{~T}=\pi / 2-$ |
| $\sin ^{-1} 0.6$ |
| Time taken is 0.464 s | \& M1

A1ft
A1 \& 3 \& For using $\theta=$ Acos nt or $\operatorname{Asin}(\pi / 2-n t)$ or for using $\theta=$ Asin nt and $\mathrm{T}=\mathrm{t}_{0.1}-\mathrm{t}_{0.06}$ ft angular displacement of 0.04 instead of 0.06

\hline
\end{tabular}

5	$2 \times 12 \cos 60^{\circ}-3 \times 8=2 a+3 b$ For LHS of equation below $0.5\left(12 \cos 60^{\circ}+8\right)=b-a$ Speed of B is $0.4 \mathrm{~ms}^{-1}$ in \mathbf{i} direction $a=-6.6$ Component of A's velocity in \mathbf{j} direction is $12 \sin 60^{\circ}$ Speed of A is $12.3 \mathrm{~ms}^{-1}$ Direction is at 122.4° to the \mathbf{i} direction	M1 A1 M1 A1 A1 M1 A1 A1 B1 B1ft M1 A1ft		$\Sigma \mathrm{mv}$ conserved in i direction. For using NEL Complete equation with signs of a and b consistent with previous equation. For eliminating a or b . May be shown on diagram or implied in subsequent work. For using $\theta=\tan ^{-1}$ (jcomp/ $\pm \mathbf{i}$ comp) Accept $\theta=57.6^{\circ}$ with θ correctly identified.
6 (i)	$\begin{aligned} & \mathrm{T}=1470 \times / 30 \\ & {[49 \mathrm{x}=70 \times 9.8]} \\ & \mathrm{x}=14 \end{aligned}$ Distance fallen is 44 m	B1 M1 A1 A1ft	4	For using $\mathrm{T}=\mathrm{mg}$
(ii)	PE loss $=70 \mathrm{~g}(30+14)$ EE gain $=1470 \times 14^{2} /(2 \times 30)$ $\left[1 / 270 v^{2}=30184-4802\right]$ Speed is $26.9 \mathrm{~ms}^{-1}$	B1ft B1ft M1 A1	4	For a linear equation with terms representing KE, PE and EE changes. AG
OR (ii)	$\left[0.5 v^{2}=14 g-68.6+30 g\right]$ For $14 \mathrm{~g}+30 \mathrm{~g}$ For ∓ 68.6 Speed is $26.9 \mathrm{~ms}^{-1}$	M1 B1ft B1ft A1	4	For using Newton's $2^{\text {nd }}$ law ($\mathrm{vdv} / \mathrm{dx}=\mathrm{g}-0.7 \mathrm{x}$), integrating $\left(0.5 \mathrm{v}^{2}=\mathrm{gx}-\right.$ $\left.0.35 x^{2}+k\right)$, using $v(0)^{2}=$ $60 \mathrm{~g} \rightarrow \mathrm{k}=30 \mathrm{~g}$, and substituting $x=14$. Accept in unsimplified form. AG
(iii)	$\begin{aligned} & \text { PE loss }=70 \mathrm{~g}(30+\mathrm{x}) \\ & \text { EE gain }=1470 x^{2} /(2 \times 30) \\ & {\left[\mathrm{x}^{2}-28 \mathrm{x}-840=0\right]} \end{aligned}$ Extension is 46.2 m	B1ft B1ft M1 A1	4	For using PE loss $=\mathrm{KE}$ gain to obtain a 3 term quadratic equation.
OR (iii)	$A=26.9 / \sqrt{0.7}$ Extension is 46.2 m	M1 M1 A1 A1	4	For identifying SHM with $\begin{aligned} & \quad n^{2}= \\ & 1470 /(70 \times 30) \\ & \text { For using } v_{\text {max }}=A n \end{aligned}$

\begin{tabular}{|c|c|c|c|c|}
\hline 7 (i) \& \[
\begin{aligned}
\& 1 / 20.3 \mathrm{v}^{2}+1 / 20.4 \mathrm{v}^{2} \\
\& \pm 0.3 \mathrm{~g}(0.6 \sin \theta) \\
\& \pm 0.4 \mathrm{~g}(0.6 \theta) \\
\& {\left[0.35 \mathrm{v}^{2}=2.352 \theta-1.764 \sin \theta\right]} \\
\& \mathrm{v}^{2}=6.72 \theta-5.04 \sin \theta
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
M1 \\
A1
\end{tabular} \& 5 \& For using the principle of conservation of energy. AG \\
\hline \multirow[t]{3}{*}{(ii)} \& \& M1 \& \& For applying Newton's \(2^{\text {nd }}\) Law radially to P and using \(\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}\) \\
\hline \& \[
\begin{aligned}
\& 0.3\left(\mathrm{v}^{2} / 0.6\right)=0.3 \mathrm{~g} \sin \theta-\mathrm{R} \\
\& {[1 / 2(6.72 \theta-5.04 \sin \theta)=}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { A1 } \\
\& \text { M1 }
\end{aligned}
\] \& \& For substituting for \(\mathrm{v}^{2}\). \\
\hline \& \[
\begin{aligned}
\& 0.3 \mathrm{~g} \sin \theta-\mathrm{R}] \\
\& \text { Magnitude is }(5.46 \sin \theta- \\
\& 3.36 \theta) \mathrm{N} \\
\& {[5.46 \cos \theta-3.36=0]} \\
\& \text { Value of } \theta \text { is } 0.908
\end{aligned}
\] \& A1
M1
A1 \& 6 \& \begin{tabular}{l}
AG \\
For using \(\mathrm{dR} / \mathrm{d} \theta=0\)
\end{tabular} \\
\hline \multirow[t]{2}{*}{(iii)} \& \[
\begin{aligned}
\& {[\mathrm{T}-0.3 \mathrm{~g} \cos \theta=0.3 \mathrm{a}]} \\
\& {[0.4 \mathrm{~g}-\mathrm{T}=0.4 \mathrm{a}]}
\end{aligned}
\] \& M1
M1 \& \& \begin{tabular}{l}
For applying Newton's \(2^{\text {nd }}\) Law tangentially to \(P\) \\
For applying Newton's \(2^{\text {nd }}\) Law to Q \\
[If \(0.4 \mathrm{~g}-0.3 \mathrm{~g} \cos \theta=0.3 \mathrm{a}\) is seen, assume this derives from
\[
\mathrm{T}-0.3 \mathrm{~g} \cos \theta=0.3 \mathrm{a} \ldots \ldots .
\] \\
M1 \\
and \(\mathrm{T}=0.4 \mathrm{~g} \ldots . . . \mathrm{M} 0]\)
\end{tabular} \\
\hline \& Component is \(5.6-4.2 \cos \theta\) \& A1 \& 3 \& \\
\hline \begin{tabular}{l}
OR \\
(iii)
\end{tabular} \& \(0.4 \mathrm{~g}-0.3 \mathrm{~g} \cos \theta=(0.3+0.4) \mathrm{a}\) Component is \(5.6-4.2 \cos \theta\) \& \[
\begin{aligned}
\& \mathrm{B} 2 \\
\& \mathrm{~B} 1 \\
\& \hline
\end{aligned}
\] \& 3 \& \\
\hline \begin{tabular}{l}
OR \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& {[2 \mathrm{v}(\mathrm{dv} / \mathrm{d} \theta)=6.72-5.04 \cos \theta]} \\
\& 2(0.6 \mathrm{a})=6.72-5.04 \cos \theta \\
\& \text { Component is } 5.6-4.2 \cos \theta
\end{aligned}
\] \& M1

M1

A1 \& 3 \& | For differentiating v^{2} (from |
| :--- |
| (i)) w.r.t. θ |
| For using $\mathrm{v}(\mathrm{dv} / \mathrm{d} \theta)=\mathrm{ar}$ |

\hline
\end{tabular}

